BackgroundPneumatic tourniquets are medical devices that occlude blood flow to distal part of extremities and are commonly used in upper limb surgeries to provide a dry, clean and bloodless field. To decrease pressure-related injuries and potential risk of complications subjected to the high inflation pressure of pneumatic tourniquet, minimal inflation pressures are recommended.MethodsA new occlusion pressure mathematical model for the upper limb was established based on the correlation analysis between several possible influencing parameters and the minimal pneumatic tourniquet pressure at which the peripheral pulse disappeared was recorded using a digital plethysmograph. A prototype of an adaptive pneumatic tourniquet which automatically varies the pressure in the tourniquet cuff according to the above prediction model was developed for the upper limb which used the lowest possible inflation pressure to achieve occlusion. The prototype comprises a blood pressure monitoring module, an inflatable tourniquet cuff, and a pressure relief mechanism to maintain an optimal cuff inflation pressure. Simulation experiments were conducted to verify the function and stability of the designed adaptive pneumatic tourniquet and clinical experiments using volunteers were undertaken to evaluate the performance of the prototype design in achieving adequate haemostasis in the upper limb.ResultsResults demonstrated that the mean arterial occlusion pressure was 152.3 ± 16.7 mmHg, obviously below the 250 to 300 mmHg previously recommended (J Bone Joint Surg Br 68:625-628, 1986 and Arthroscopy 11:307–311, 1995).ConclusionsIn conclusion, this adaptive method and apparatus which can provide minimal inflation pressure may be a clinically practical alternative for upper limb surgery performed with pneumatic tourniquets.