Abstract Surface gravity wave interaction of composite wavy porous plate is studied by developing a numerical model using the boundary element method in the context of two-dimensional linear potential theory. Bragg scattering phenomenon is studied by considering the linearized pressure drop condition known as Darcy’s law passing through the porous structure. Numerical results are obtained through the boundary element method for the special limiting case of the existing previous literature to authenticate the accuracy of the numerical solution. The influence of wave and structural design parameters such as the number of ripple wavelengths of the wavy plate, relative plate length, structural porosities, and relative submergence depth on hydrodynamics properties such as reflection, transmission, horizontal wave load, and vertical wave coefficients are discussed. The study results of composite wavy porous plate indicate improved hydrodynamic performance as compared to the horizontal porous plate and wavy porous plate. This study is significant for practical applications in coastal engineering environments.
Read full abstract