Abstract
As an anhydrous fracturing method, liquid nitrogen jet fracturing technology is expected to become an efficient development method for shale gas resources. In order to explore the influence of the pressurization effect in the liquid nitrogen jet channel, the flow field in the perforation tunnel during the liquid nitrogen jet fracturing process was simulated by computational fluid dynamics, and the complex flow mechanism of liquid nitrogen in the perforation tunnel was analyzed. The pressurization effect of liquid nitrogen jet and water jet fracturing was compared, and the influence of various parameters on the pressurization effect of liquid nitrogen jet fracturing was studied. The research results indicate that under the same conditions, liquid nitrogen jets have a pressurization effect comparable to water jets, and the difference between the pressurization values of the liquid nitrogen jet and the water jet in the perforation tunnel is not more than 0.4 MPa under different nozzle pressure drop conditions. The larger the nozzle pressure drop and nozzle diameter, the greater the pressure increase value in the perforation tunnel of liquid nitrogen jet fracturing, which decreases with the increase in casing hole diameter. Further analysis shows that the pressurization effect is most affected by the two parameters of casing hole diameter and nozzle diameter. The essential reason for its influence on the pressurization value is the squeezing effect of the jet on the perforation tunnel fluid and the sealing effect of the shrinking part of the perforation tunnel on the backflow. The ambient pressure, the temperature of liquid nitrogen, and the diameter of the wellbore have no obvious effect on the pressurization effect. Therefore, through the reasonable combination of casing hole diameter and nozzle diameter, the sealing effect of the contraction part of the perforation tunnel on the fluid and the squeezing effect on the fluid in the perforation tunnel will be affected, which will significantly improve the pressurization effect of the liquid nitrogen jet in the perforation tunnel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.