Biological mineral generation via an amorphous precursor is a topic of great current interest. Various factors such as the temperature, solution composition and presence of organic molecules can influence this important inorganic process. Here we demonstrate that this mineral transformation can actually readily be regulated by solution viscosity, a fundamental but often overlooked property. In our experiment, amorphous calcium carbonate (ACC), a key model compound in biomimetic mineralization studies, is synthesized and dispersed into inert dispersants with different viscosities and the crystallization process is examined by using FT-IR spectroscopy and XRD. It is found that the inhibition of the transformation of ACC becomes more significant with increasing fluid viscosity. This phenomenon can be explained by the differences in ion diffusion in different media. Furthermore, the resulting crystals always have different morphologies and size distributions although they all have the calcite structure. This study implies that the importance of the fluid medium cannot be ignored in building a complete understanding of biological control of biomimetic crystallizations.