Water-in-water (W/W) Pickering emulsions, exhibit considerable potential in the food and pharmaceutical fields owing to their compartmentalization and high biocompatibility. However, constrained by the non-uniform distribution of shear forces during emulsification or the spatial obstruction in polydimethylsiloxane (PDMS) passive microfluidic platform, the existing methods cannot generate monodisperse W/W Pickering emulsions with high particle coverage rate, thereby limiting their applications. Herein, a novel microfluidic system is designed for the preparation of monodisperse and highly particle-covered W/W Pickering emulsions under mild conditions. pH-responsive Polyethylene glycol (PEG)/phosphate aqueous two-phase system (ATPS) is used for the emulsions' preparation. Notably, a coverage rate of 96 ± 3 % is obtained by adjusting the length of the helical coiled tube, as well as the size and contact angle of genipin cross-linked BSA (BSA-GP) particles. Moreover, these W/W Pickering emulsions, with surfaces almost completely covered, can maintain monodisperse (Ncoal = 1.18 ± 0.03) for one day. Furthermore, the results of ranitidine hydrochloride (RH) release demonstrated that the drug release rate of W/W Pickering emulsions in the simulated gastric fluid (SGF) was 10 times faster than that in the neutral solution. We believe that the highly particle-covered monodisperse W/W Pickering emulsions possess great potential applications in bioencapsulation for foods and drug delivery.
Read full abstract