Abstract
X-ray-induced photodynamic therapy (X-PDT) combines both the advantages of radiotherapy (RT) and PDT, and has considerable potential applications in clinical deep-penetrating cancer therapy. However, it is still a major challenge to prepare monodisperse nanoscintillators with uniform size and high light yield. In this study, a general and rapid synthesis method is presented that can achieve large-scale preparation of monodisperse and uniform silicate nanoscintillators. By simply adjusting the metal dopants, silicate nanoscintillators with controllable size and X-ray-excited optical luminescence (450-900 nm) are synthesized by employing a general ion-incorporated silica-templating method. To make full use of external radiation, the silicate nanoscintillators are conjugated with photosensitizer rose bengal and arginylglycylaspartic acid (RGD) peptide, making them intrinsically dual-modal targeted imaging probes. Both in vitro and in vivo experiments demonstrate that the silicate nanosensitizers can accumulate effectively in tumors and achieve significant inhibitory effect on tumor progression under low-dose X-ray irradiation, while minimally affecting normal tissues. The insights gained in this study may provide an attractive route to synthesize nanosensitizers to overcome some of the limitations of RT and PDT in cancer treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.