This article considers estimation of the slope parameter of the linear regression model with Student-t errors in the presence of uncertain prior information on the value of the unknown slope. Incorporating uncertain non sample prior information with the sample data the unrestricted, restricted, preliminary test, and shrinkage estimators are defined. The performances of the estimators are compared based on the criteria of unbiasedness and mean squared errors. Both analytical and graphical methods are explored. Although none of the estimators is uniformly superior to the others, if the non sample information is close to its true value, the shrinkage estimator over performs the rest of the estimators.