Abstract
The estimation of the mean vector of a multivariate normal distribution, under the uncertain prior information (UPI) that component means are equal but unknown, is considered. The positive part of Stein-Rule (PSE) and improved preliminary test (IPE) estimators are proposed. It is demonstrated analytically as well as computationally that the positive part of Stein-Rule estimator is superior to the usual Stein-Rule estimator (SE). Furthermore, it is shown that the proposed improved pretest estimator dominates the traditional preliminary test estimator (PE) regardless the correctness of the nonsample information. The relative dominance of the proposed estimators are presented analytically as well as graphically. Percentage improvements of the proposed estimators over the unrestricted estimator (UE) are computed. It is shown that for p ⩾ 3 , SE or PSE is the best to use while for p ⩽ 2 , UE is preferable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.