CAM/CAD composites are widely used as dental restoration materials due to their resistivity to wear. The purpose of this study was to determine the effect of human gingival fibroblast cells on three different computer-aided design/computer-aided manufacturing (CAD/CAM) hybrid materials with resin-based composites (RBC) and to assess their stability following cell growth. The CAM/CAD dental materials were investigated in different conditions as follows: (i) cells (human gingival fibroblasts, HFIB-Gs) incubated over the material for each sample, denoted as A; (ii) reference, the raw material, denoted as B; and (iii) materials incubated in DMEM medium, denoted as C. We employed Vicker's hardness test, EDS, SEM, and AFM measurements as well as Raman spectroscopy to carefully characterize the surface modifications and the structural integrity of the CAM/CAD materials before and after fibroblast cell culture. The analysis of the surface in terms of morphology, roughness, structure, and plastic deformation presented no significant difference after incubation in cells or in media, proving their extraordinary stability and resilience to biofilm formation.
Read full abstract