Preference logic programming (PLP) is an extension of logic programming for declaratively specifying problems requiring optimization or comparison and selection among alternative solutions to a query. PLP essentially separates the programming of a problem itself from the criteria specification of its solution selection. In this paper we present a declarative method for specifying preference logic programs. The method introduces a precise formalization for the syntax and semantics of PLP. The syntax of a preference logic program contains two disjoint sets of definite clauses, separating a core program specifying a general computational problem from its preference rules for optimization; the semantics of PLP is given based on the Herbrand model and fixed point theory, where how preferences affects the least Herbrand model of a logic program is interpreted as a sequence of meta-level mapping operations. In addition, we present an operational semantics based on a new resolution strategy and a memoized recursive algorithm for computing strictly stratified logic programs with well-formed preferences, and further show that the operational semantics of such a preference logic program is consistent to its declarative semantics.