In this work, we present an algorithm developed to handle biomolecular structural recognition problems, as part of an interdisciplinary research endeavor of the Computer Vision and Molecular Biology fields. A key problem in rational drug design and in biomolecular structural recognition is the generation of binding modes between two molecules, also known as molecular docking. Geometrical fitness is a necessary condition for molecular interaction. Hence, docking a ligand (e.g., a drug molecule or a protein molecule), to a protein receptor (e.g., enzyme), involves recognition of molecular surfaces. Conformational transitions by "hinge-bending" involves rotational movements of relatively rigid parts with respect to each other. The generation of docked binding modes between two associating molecules depends on their three dimensional structures (3-D) and their conformational flexibility. In comparison to the particular case of rigid-body docking, the computational difficulty grows considerably when taking into account the additional degrees of freedom intrinsic to the flexible molecular docking problem. Previous docking techniques have enabled hinge movements only within small ligands. Partial flexibility in the receptor molecule is enabled by a few techniques. Hinge-bending motions of protein receptors domains are not addressed by these methods, although these types of transitions are significant, e.g., in enzymes activity. Our approach allows hinge induced motions to exist in either the receptor or the ligand molecules of diverse sizes. We allow domains/subdomains/group of atoms movements in either of the associating molecules. We achieve this by adapting a technique developed in Computer Vision and Robotics for the efficient recognition of partially occluded articulated objects. These types of objects consist of rigid parts which are connected by rotary joints (hinges). Our method is based on an extension and generalization of the Hough transform and the Geometric Hashing paradigms for rigid object recognition. We show experimental results obtained by the successful application of the algorithm to cases of bound and unbound molecular complexes, yielding fast matching times. While the "correct" molecular conformations of the known complexes are obtained with small RMS distances, additional, predictive good-fitting binding modes are generated as well. We conclude by discussing the algorithm's implications and extensions, as well as its application to investigations of protein structures in Molecular Biology and recognition problems in Computer Vision.