Abstract

In this paper, we present a fast mode decision algorithm and design its VLSI architecture for H.264 intra-prediction. A regular spatial domain filtering technique is proposed to compute the dominant edge strength (DES) to reduce the possible predictive modes. Experimental results revealed that the proposed fast intra-algorithm reduces 40% computation with slight peak signal-to-noise ratio (PSNR) degradation. The designed DES VLSI engine comprises a zigzag converter, a DES finite-state machine (FSM), and a DES core. The former two units handle memory allocation and control flow while the last performs pseudoblock computation, edge filtering, and dominant edge strength extraction. With semicustom design fabricated by 0.18 mum CMOS single-poly-six-metal technology, the realized die size is roughly 0.15 times 0.15 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and can be operated at 66 MHz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.