Predators often employ a complex series of behaviors to overcome antipredator defenses and effectively capture prey. Although hunting behaviors can improve with age and experience, many precocial species are necessarily effective predators from birth. Additionally, many predators experience innate ontogenetic shifts in predatory strategies as they grow, allowing them to adapt to prey more appropriate for their increased size and energetic needs. Understanding how the relative roles of innate age-specific adaptation and learning have evolved requires information on how predation behavior develops in situ, in free-ranging predators. However, most of the research on the ontogeny of predation behavior is based on laboratory studies of captive animals, largely due to the difficulty of following newborn individuals in nature. Here, we take advantage of the unique tracks left by juveniles of a precocial viperid, the sidewinder rattlesnake (Crotalus cerastes), which we used to follow free-ranging snakes in the field. We recorded details of their ambush hunting behavior, and compared the behaviors of these juveniles to adult snakes that we monitored in the field via radio telemetry. Although juvenile and adult behaviors were similar in most respects, we did find that adults chose more effective ambush sites, which may be due to their increased experience. We also found that juveniles (but typically not adults) perform periodic tail undulations while in ambush, and that juveniles displayed slightly different activity cycles. Both of these latter differences are likely the result of age-specific adaptations for juveniles’ greater reliance on lizards versus small mammals as prey. We also compared the general predatory behavior of sidewinders to that of other species in the genus Crotalus. These findings will provide important baseline field information for more detailed empirical research on the ontogeny of predation behavior in precocial vertebrates.
Read full abstract