Abstract

Spiders are small arthropods that have colonized terrestrial environments. These impose three main problems: (i) terrestrial habitats have large fluctuations in temperature and humidity; (ii) the internal concentration of water is higher than the external environment in spiders, which exposes them continually to water loss; and (iii) their small body size determines a large surface/volume ratio, affecting energy exchange and influencing the life strategy. In this review we focus on body design, energetic, thermal selection, and water balance characteristics of some spider species present in Chile and correlate our results with ecological and behavioral information. Preferred temperatures and critical temperatures of Chilean spiders vary among species and individuals and may be adjusted by phenotypic plasticity. For example in the mygalomorph high-altitude spider Paraphysa parvula the preferred temperature is similar to that of the lowland spider Grammostola rosea; but while P. parvula shows phenotypic plasticity, G. rosea does not. The araneomorph spiders Loxosceles laeta and Scytodes globula have greater daily variations in preferred temperatures at twilight and during the night, which are set to the nocturnal activity rhythms of these species. They also present acclimation of the minimum critical temperatures. Dysdera crocata has a low preferred temperature adjusted to its favorite prey, the woodlouse. Spider metabolic rate is low compared to other arthropods, which may be associated with its sit and wait predatory strategy particularly in primitive hunter and weavers. In mygalomorph spiders the respiratory system is highly optimized with high oxygen conductance, for example G. rosea needs only a difference of 0.12–0.16 kPa in the oxygen partial pressure across the air-hemolymph barrier to satisfy its resting oxygen consumption demands. Water loss is a significant stress for spiders. Paraphysa parvula shows an evaporative water loss 10 times more than usual when the temperature approaches 40°C and the participation of book lungs in this loss is about 60%. This species and others show seasonal changes in water loss accounted for by changes in cuticle permeability. The case of Chilean spiders shows how the ecophysiology in spiders is associated to their design and body size and how is affected by fluctuating Mediterranean environments, suggesting that the adaptive process can be seen as a route of optimizing the use of energy to cope with environmental restrictions imposed by the interaction with the terrestrial environment and lifestyle.

Highlights

  • The main objective in ecophysiology is the analysis of the physiological mechanisms of ecological and evolutionary significance, determining how physiology affects and is affected by the distribution and abundance of animals in space and time, and the study of patterns and processes by which physiological variability originates and/or persists

  • The ecophysiology of spiders is deeply influenced by three factors: the ectothermy, the body size, and the presence of the cuticle

  • Ectothermy on the one hand makes the metabolism of spiders dependent external environment determining the need for behavioral thermoregulation, and minimizes heat loss by reducing the thermal differential between body and the environment

Read more

Summary

Introduction

The main objective in ecophysiology is the analysis of the physiological mechanisms of ecological and evolutionary significance, determining how physiology affects and is affected by the distribution and abundance of animals in space and time, and the study of patterns and processes by which physiological variability originates and/or persists Another objective is to determine how some animal species can exploit extreme environments such as high altitude and extreme deserts, and how physiological constraints are reflected in differential biological adaptations (Bozinovic and Canals, 2008). One might expect that the organisms that maximize the difference between energy input and operating costs would be favored by selection, since energy losses would be detrimental to the survival and reproduction functions Seen this way, one could understand the adaptive process as the route of optimization in the use of energy subject to the restrictions imposed by the environment, whether given by the way of life, a restriction of space or other factors (Bozinovic and Canals, 2008). In this review we analyze the thermal and water aspects of spider physiology of Chilean spiders from fluctuating Mediterranean environments and how they are associated and conditioned by their own design

Design and Body Size
Findings
Concluding Remarks
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call