Biofilms increase bacterial resistance to antibiotics, as conventional antibiotic doses are often ineffective at penetrating the biofilm matrix to eliminate bacteria. Recent research has shown that the Gram-negative predator bacterium Bdellovibrio bacteriovorus can penetrate Gram-positive bacterial biofilms during its predation phase and benefit from them without direct predation. Here, based on the penetration ability of B. bacteriovorus, we constructed antibiotic-loaded liposome-engineered B. bacteriovorus as a drug delivery strategy for biofilm-related diseases. As a "living antibiotic," B. bacteriovorus can prey on Gram-negative bacteria, penetrate biofilms, and disrupt their dense structure. During this process, the rapid movement of B. bacteriovorus enhances the delivery of antibiotic-loaded liposomes into the biofilm, promoting efficient antibiotic release and improving biofilm eradication. Our findings demonstrate that this engineered living antibiotic strategy significantly improves the control and removal of bacterial biofilms, accelerates the elimination of dental plaque, promotes wound healing, and holds promise as a novel platform for treating biofilm-related infections.
Read full abstract