Abstract
As an important reservoir of antibiotic resistance genes (ARGs), the sludge discharged from wastewater treatment plants is the key intermediate for ARG transport into the environment. Bdellovibrio-and-like organisms (BALOs) are predatory bacteria that are expected to attack antibiotic-resistant bacteria (ARB). In this study, the screened BALOs (C3 & D15) were mixed with the sludge for biolysis to achieve the satisfying removal efficiencies of six tet genes, two sul genes, and one mobile genetic element (intl 1). Among them, tet(Q) demonstrated the highest reduction rate in relative abundance at 87.3 ± 1.0 %, while tet(X) displayed the lowest of 11.7 ± 0.2 %. The microorganisms, including Longilinea, Methanobacterium, Acetobacterium, Sulfurimonas, allobaculum, Gaiella, AAP99, Ellin6067, Rhodoferax, Ferruginibacter and Thermomonas, were expected to play a dual role in the reduction of ARGs by serving as ARB and BALOs’ preferred prey. Meanwhile, BALOs consortium improved ARGs reduction efficiency via the expansion of the prey profile. Additionally, BALOs decreased the relative abundance of not only pathogens (Shinella, Rickettsia, Burkholderia, Acinetobacter, Aeromonas, Clostridium, Klebsiella and Pseudomonas), but also the ARGs' host pathogens (Mycobacterium, Plesiocystis, Burkholderia, and Bacteroides). Therefore, the application of BALOs for sludge biolysis are promising to decrease the sludge's public health risks via limiting the spread of ARGs and pathogens into the environment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have