Low latency, high data speeds, and a higher degree of perceived service quality for consumers and base station capacity are only some of the advantages of fifth generation (5G) mobile communications. This paper focuses on the design of a precoding system for downlink transmission of multi-user multiple-input multiple-output (MU-MIMO). For MU-MIMO systems, the traditional precoding techniques investigated are difficult since the transmitter precoding matrices created by singular value decomposition (SVD) are calculated twice. This paper implements different techniques of precoding with channel coding. Two advanced precoding, zero forcing (ZF) and maximum ratio transmitter (MRT) systems will be evaluated to find the best between them. Three different coding channels (turbo, low-density parity-check (LDPC), and polar) are used in this paper. The results indicate that the ZF-MU-MIMO with turbo coding outperforms MRT precoding, and more spatial diversity gain may be gained, in terms of throughput, number of users supported, and lower error rate in downlink and uplink massive MIMO.