Maize, a cornerstone of global food security, has undergone remarkable transformations through breeding, yet it faces mounting challenges in a changing world. In this review, we trace the historical successes of maize breeding which laid the foundation for present opportunities. We examine both the specific and shared breeding goals related to diverse geographies and end-use demands. Achieving these coordinated breeding objectives requires a holistic approach to trait improvement for sustainable agriculture. We discuss cutting-edge solutions, including multi-omics approaches from single-cell analysis to holobionts, smart breeding with advanced technologies and algorithms, and the transformative potential of rational design with synthetic biology. A transition towards a data-driven future is currently underway, with large-scale precision agriculture and autonomous systems poised to revolutionize farming practice. Realizing these futuristic opportunities hinges on collaborative efforts spanning scientific discoveries, technology translations, and socioeconomic considerations in maximizing human and environmental well-being.
Read full abstract