When traditional grid-forming converters directly participate in the grid-connected operation of the power grid, due to the lack of a pre-synchronization control system, the voltage amplitude and initial phase on both sides of the grid-connected point will deviate, resulting in voltage and current distortion during grid-connected mode. An active support phase-locked loop free pre-synchronization control strategy based on the third-order model of a synchronous generator is proposed to address the grid-connected problem of the grid-forming converter mentioned above. First, a model of active support control with frequency integral feedback at small signal levels was constructed. The root locus method was employed to examine how system parameters affect the stability of the active support control system. Second, by adding phase pre-synchronization controllers and amplitude pre-synchronization controllers to the active frequency loop and excitation voltage loop of the third-order model, it was ensured that the frequency, phase, and voltage amplitude of the unit are consistent with the power grid, achieving a fast and smooth grid-connected mode of the unit. Finally, by using a DC source to simulate all types of new energy power generation equipment, the active support pre-synchronization control system based on the three-order model of synchronous generator is built in the MATLAB/Simulink simulation environment, and the accuracy and effectiveness of the control strategy in this paper is verified.
Read full abstract