A novel magnetoencephalography source imaging approach called Fast Vector-based Spatio-Temporal Analysis (Fast-VESTAL) has been successfully applied in creating source images from evoked and resting-state data from both healthy subjects and individuals with neurological and/or psychiatric disorders, but its reconstructed source images may show false-positive activations, especially under low signal-to-noise ratio conditions. Here, to effectively reduce false-positive artifacts, we introduced an enhanced Fast-VESTAL (eFast-VESTAL) approach that adopts generalized second-order cone programming. We compared the spatiotemporal characteristics of the eFast-VESTAL approach to those of the popular distributed source approaches (e.g., the minimum L2-norm/ mixed-norm methods) using computer simulations and auditory experiments. More importantly, we applied eFast-VESTAL to the presurgical evaluation of epilepsy. Our results demonstrated that eFast-VESTAL exhibited a lower dipole localization error and/or a higher correlation coefficient (CC) between the estimated source time series and ground truth under various conditions of source waveforms. Experimentally, eFast-VESTAL displayed more focal activation maps and a higher CC between the raw and predicted sensor data in response to auditory stimulation. Notably, eFast-VESTAL was the most accurate method for noninvasively detecting the epileptic zones determined using more invasive stereo-electroencephalography in the comparison.
Read full abstract