A plane strain problem for two piezoelectric half-spaces adhered by a very thin isotropic interlayer with a crack under the action of remote mixed mode mechanical loading and electrical flux is considered. The crack is situated either at an interface or in the interlayer. It is assumed that the substrates are much stiffer than the intermediate layer. Therefore, pre-fracture zones (plastic or damage) arise at the crack continuations. Normal and shear stresses are assumed to be constant in this zones and to satisfy some material equation, which can be taken from theory or derived experimentally. Modeling the pre-fracture zones by the crack continuations with unknown cohesive stresses on their faces reduces the problem to elastic interface crack analysis leading to a Hilbert problem. This problem is solved exactly. The pre-fracture zone lengths and stresses in these zones are found from algebraical and transcendental equations. The latter are derived from the conditions of stress finiteness at the ends of pre-fracture zones and the material equations. The electrical displacement at any point of the pre-fracture zones is found in closed form as well. Particular cases of symmetrical loading and of equivalent properties of the upper and lower bimaterial components are considered. Numerical results corresponding to certain material combinations and interlayer material equations are presented and analysed. In the suggested model, any singularities connected with the crack are eliminated, i.e., all mechanical and electrical characteristics are limited in the near-crack tip region.