Masonry structures in addition to their long heritage are still widely used in civil engineering practice. It should be emphasized that a lot of research has already been done on the seismic behavior of masonry structures. However, due to the nature of such a problem, its complexity and seriousness, the development of numerical models and their connection with experimental tests are always important. This is particularly significant considering their vulnerability to the action of horizontal forces generated during seismic excitations. In recent decades, many researchers have tried to capture the behavior of unreinforced masonry (URM) structures or reinforced concrete (RC) frames with masonry infills exposed to earthquakes, using different approaches. This paper tackles numerical modeling based on the finite element method (FEM) for the estimation of the dynamic response of two adjacent interacting URM units, subjected to shaking table motions. Geometrical and material properties of the specimen are provided by the Horizon 2020 project SERA-AIMS (The Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe – Seismic Testing of Adjacent Interacting Masonry Structures). The analyses of dynamic performance were executed in SAP2000 software. Obtained results on the numerical model provide useful guidelines for modeling the nonlinear seismic behavior of masonry buildings.
Read full abstract