Using multiple-satellite datasets, in situ observations, and numerical simulations, the influence of typhoon-induced precipitation on the oceanic response to Typhoon Kalmaegi has been discussed. It is found that the convective system and precipitation distribution of Kalmaegi was asymmetric, which leaded to the asymmetric rainfall at observational stations. The sea surface salinity (SSS) of the buoy to the right of storm track increased with a 0.176 practical salinity units (psu) maximal positive anomaly, while the two buoys on the left side underwent several desalination processes, with a maximum decreases of 0.145 psu and 0.278 psu. Numerical simulations with and without precipitation forcing were also performed. Model results showed that typhoon-induced precipitation can weaken sea surface cooling by approximately 0.03–0.40 °C and suppress the SSS increase by approximately 0.074–0.152 psu. The effect of precipitation can be divided into the direct effect and indirect effect. On one hand, freshwater from precipitation directly dilutes the salinity. On the other hand, when salinity decreases, the ocean stratification will be enhanced, the vertical mixing will be restrained, and then the temperature and salinity can be further affected by weakened vertical mixing.