With the ongoing development of renewable energy sources, information technologies and physical energy systems are further integrated, which leads to challenges in ensuring the secure and stable operation of renewable energy power systems in the face of potential cyber threats. The strengths of blockchain in cybersecurity make it a promising solution to these challenges. However, existing blockchains are not well-suited for control tasks due to their low real-time performance. Here, we present a consensus mechanism that enables real-time security control of systems, called Proof of Task. Instead of solving meaningless hash puzzles in Proof of Work, Proof of Task addresses problems closely related to the stable operation and control performance of these systems. With the proposed verification mechanism, Proof of Task significantly enhances the real-time performance of blockchain while mines its computational resources for tasks of interest. To demonstrate the effectiveness and necessity of Proof of Task, it is deployed across three renewable energy power systems. The results show that Proof of Task markedly fortifies the security and computing capability of these systems, ensuring their reliable and stable operation. This work highlights the promise of blockchain to facilitate security control and trusted computing of large-scale, complex-dynamic systems.
Read full abstract