Abstract
Load frequency control systems are crucial for maintaining the stability and reliability of power grids. They help ensure that the power supply matches the demand, preventing fluctuations in grid frequency. However, Load frequency control systems have inherent limitations, such as the potential for instability and oscillation if not properly controlled. In this work, A fractional order proportional integral derivative controller is proposed to address this issue, which exhibits strong capabilities in managing parameter uncertainties, rejecting disturbances, and handling non-linear systems controllers. The novel approach in this search is the application of the zebra optimization algorithm to fine-tune controller parameters, a technique not previously used in load frequency control systems. In this Study the two-area power system with a reheat turbine is used a test case for fractional order proportional integral derivative controller, and the system is simulated using MATLAB/SIMULINK. The objective function integral time of square error is used that acts as a bridge of communication between the system's behavior and the control strategy. The performance of this controller is evaluated under disturbance 0.04. The results of the analysis demonstrated that the fractional order proportional integral derivative based zebra optimization algorithm controller outperformed the traditional fractional order proportional integral derivative controller in terms of three essential criteria: overshoot, settling time, and steady-state error. This research contributes to the advancement of load frequency control systems, ensuring reliable and stable power system operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Electronics Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.