To enhance the positioning accuracy of standalone GNSS receivers in environments unable to provide precise ephemeris and clock offset, such as undeveloped forest areas that lack network communication and power supply, this study employed the Time Difference Carrier Phase (TDCP) technology to improve the positioning accuracy of Standard Point Positioning (SPP), where the Least-Squares (LS) and the extended Multi-Epoch Least Squares (MELS) method were applied in the position domain filtering for a single GNSS receiver and compare its performance with the existing observation domain filtering method. Firstly, the simulated data sets with various positioning accuracies were used to verify the effectiveness and convergence of the LS filtering methods. The results indicate that the LS filtering method produces a lower root mean square (RMS) error than the original strategy. Secondly, this study uses two kinematic GNSS data sets to evaluate the performance of the observation and position domain filtering, with an emphasis on the MELS method. The numerical experiment results show that the position domain LS filtering method outperforms the other two methods. The open environment experiments result shows that the positioning domain filtering method achieved positioning accuracies of 0.202 m, 0.843 m, and 2.036 m in the E, N, and U directions, respectively, with improvements of 68.0%, 21.6%, and 24.0%, compared to the original algorithm which achieved positioning accuracies of 0.631 m, 1.076 m, and 2.680 m. It also achieved improvements of 24.0%, 4.0%, and 18.3%, respectively, compared to the observation domain filtering method with positioning accuracies of 0.353 m, 0.886 m, and 2.526 m. The forest scenes experiments result shows that the positioning domain filtering method achieved positioning accuracies of 1.308 m, 1.375 m, and 2.133 m in the E, N, and U directions, respectively, with improvements of 42.4%, 36.2%, and 27.6%, compared to original algorithm which achieved positioning accuracies of 1.863 m, 1.873 m, and 2.722 m, and also achieved improvements of 27.0%, 19.4% and 10.6%, respectively, comparing to observation domain filtering method with positioning accuracies of 1.661 m, 1.642 m and 2.359 m. Moreover, the examination of the LS method results based on different epochs reveals that the filtering accuracy increases as more epochs are incorporated into the position domain integration and the enhancement value reaches a few millimeters.