Abstract
This study concerns problems related to the assessment of reactive power in power networks with nonlinear fast-varying loads, such as electric arc furnaces, rolling mill drives, etc. The operation of this type of load is characterized by the introduction of interharmonic currents (including higher harmonics) into the power supply network and a relatively low power factor. Rapid changes in the RMS value of the current also cause voltage fluctuations and the related phenomenon of light-flickering. Therefore, there is a need to evaluate the power selection of compensating devices, taking into account the random nature of load changes and the distortion of current and voltage waveforms, in particular, interharmonic components, the impact of which has not been fully investigated so far. To analyze the random nature of load changes, autocorrelation functions were used, which allowed for the estimation of the expected values of the arc furnace current distortion coefficient (based on the recorded waveforms). In order to determine the parameters of reactive power compensating devices, and in particular capacitor banks, an autocorrelation function in the exponential-cosine-sine form was used, which meets the conditions of differentiation. This study contains comparative results of the reactive power of capacitor banks determined using different methods. The criterion for selecting capacitor bank parameters was the minimization of energy losses in the power supply network. The calculations presented in this study show that by taking into account higher harmonics and interharmonics in the voltage and currents of fast-varying loads, the installed power of the capacitor bank can be reduced by approximately 7%, and energy losses in the power grid can be reduced by 3–5%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.