The objective of this study is to analyze the piston rebound energy storage characteristics of the nitrogen-hydraulic combined impact hammer and to investigate the manner in which the piston rebound energy is converted and utilized. The kinetic equation of the impact hammer system is established. A numerical calculation model is constructed based on AMEsim, which incorporates the piston, cylinders, reversing valve, accumulator, power source, drill rod, and impacted device. The performance experiment system is designed, the oil pressure experiment and the piston motion experiment are constructed, and the accuracy of the numerical calculation model is verified by comparing the numerical calculation results with the experimental results. This paper investigates the fundamental principles of the piston rebound energy storage and analyzes the relationship between the opening percentage of the reversing valve high-pressure port and the piston rebound energy storage at the outset of the rebound stage. Furthermore, the influence of the length of the piston middle section and the number of high-pressure grooves in the signal chamber on the piston rebound energy storage is investigated. Finally, the experimental comparison allows for an analysis of the influence of the piston rebound energy storage on the performance of the nitrogen-hydraulic combined impact hammer.
Read full abstract