Abstract

Recent research efforts in flexible electronics focus on developing lightweight, thin, and flexible micro scale supercapacitor devices integratable on a chip as power source devices. The key requirements for such devices are high performance, 2D form factor, and compatibility with thin-chip technology. We report the fabrication of an ultra-thin flexible microsupercapacitor (fMSC) based on a highly aligned horizontal array of carbon nanotube (HACNT) sheet with in-plane interdigitated configuration using a facile, single-step and scalable fabrication process. The devices exhibited, excellent flexibility under various bending states, and outstanding bending durability up to 10,000 cycles under bending angle of 180°. A representative fMSC with resolution of 40 μm showed a high peak energy density of 54 mWh cm−3. It was observed that the electrolyte deposition technique (drop-cast vs. spin-coating) affects the performance of fMSC devices. Drop-cast devices showed a higher specific capacitance (almost double) compared to spin-coated devices, but at the expense of flexibility. To demonstrate on-board integration, an array of these fMSCs was used as an energy storage unit in a vibrational energy-harvesting device, powered by a piezoelectric disk. This work demonstrates the potential of HACNT sheet based fMSCs with spin-coat electrolytes as ultra-thin microsupercapacitor devices for portable and wearable electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.