Models for wind farm power fluctuations primarily focus on the impact of atmospheric turbulence. We employ large eddy simulations (LES) to demonstrate that dynamic changes in thrust (CT ) and power (CP ) coefficient affect the coherence of power fluctuations in turbine pairs. We consider various inflow wind speeds to examine the velocity and power coherence between consecutive turbine rows under three scenarios: (I) a fully developed region where all turbines operate below rated power, (II) the front row operates above rated power while the downstream row operates below rated power, and (III) both rows operate above rated power. In scenario I, the random sweeping hypothesis turbulence model by Tobin and Chamorro, JFM 855, 1116-1129 (2018) can effectively predict the coherence between the turbines. However, in scenarios II and III, the model fails to capture the simulation results. This discrepancy arises due to the operation of above-rated turbines, with dynamically varying CT and CP , which have a distinctly different effect on the flow than turbines operating with fixed CT and CP .
Read full abstract