Abstract

This paper deals with a cooperative control of a resistive type superconducting fault current limiter (SFCL) and a superconducting magnetic energy storage (SMES) for enhancing fault ride through (FRT) capability and smoothing power fluctuation of the doubly fed induction generator (DFIG)-based wind farm. When the system faults occur, the SFCL is used to limit the fault current, alleviate the terminal voltage drop, and transient power fluctuation so that the DFIG can ride through the fault. Subsequently, the remaining power fluctuation is suppressed by the SMES. The resistive value of the SFCL as well as the superconducting coil inductance of the SMES are simultaneously optimized so that a sudden increase in the kinetic energy in the DFIG rotor during faults, an initial stored energy in the SMES coil, an energy loss of the SFCL, and an output power fluctuation of the DFIG are minimum. The superior control effect of the cooperative SFCL and SMES over the individual device is confirmed by simulation study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.