Permanent magnets based on FePrCuB were realized on a laboratory scale through additive manufacturing (laser powder bed fusion, L-PBF) and book mold casting (reference). A well-adjusted two-stage heat treatment of the as-cast/as-printed FePrCuB alloys produces hard magnetic properties without the need for subsequent powder metallurgical processing. This resulted in a coercivity of 0.67 T, remanence of 0.67 T and maximum energy density of 69.8 kJ/m3 for the printed parts. While the annealed book-mold-cast FePrCuB alloys are easy-plane permanent magnets (BMC magnet), the printed magnets are characterized by a distinct, predominantly directional microstructure that originated from the AM process and was further refined during heat treatment. Due to the higher degree of texturing, the L-PBF magnet has a 26% higher remanence compared to the identically annealed BMC magnet of the same composition.