The study of the process of laser action on powder materials requires the construction of mathematical models of the interaction of laser radiation with powder particles that take into account the features of energy supply and are applicable in a wide range of beam parameters and properties of the particle material. A model of the interaction of pulsed or pulse-periodic laser radiation with a spherical metal particle is developed. To find the temperature distribution in the particle volume, the non-stationary three-dimensional heat conductivity equation with a source term that takes into account the action of laser radiation is solved. In the plane normal to the direction of propagation of laser radiation, the change in the radiation intensity obeys the Gaussian law. It is possible to take into account changes in the intensity of laser radiation in space due to its absorption by the environment. To accelerate numerical calculations, a computational algorithm is used based on the use of vectorized data structures and parallel implementation of operations on general-purpose graphics accelerators. The features of the software implementation of the method for solving a system of difference equations that arises as a result of finite-volume discretization of the heat conductivity equation with implicit scheme by the iterative method are presented. The model developed describes the heating and melting of a spherical metal particle exposed by multi-pulsed laser radiation. The implementation of the computational algorithm developed is based on the use of vectorized data structures and GPU resources. The model and calculation results are of interest for constructing a two-phase flow model describing the interaction of test particles with laser radiation on the scale of the entire calculation domain. Such a model is implemented using a discrete-trajectory approach to modeling the motion and heat exchange of a dispersed admixture.
Read full abstract