Superoxide dismutase 1 (SOD1) is a vital enzyme responsible for attenuating oxidative stress through its ability to facilitate the dismutation of the superoxide radical into oxygen and hydrogen peroxide. The progressive loss of motor neurons characterize amyotrophic lateral sclerosis (ALS), a crippling neurodegenerative disease that is caused by mutations in the SOD1 gene. In this study, in silico mutational analysis was performed to study the various mutations, the pathogenicity and stability ΔΔG (binding free energy) of the variant of SOD1. x in the protein variant analysis showed a considerable destabilizing effect with a ΔΔG value of −4.2 kcal/mol, signifying a notable impact on protein stability. Molecular dynamics simulations were conducted on both wild-type and C146R mutant SOD1. RMSD profiles indicated that both maintained consistent structural conformation over time. Additionally, virtual screening of 3067 FDA-approved drugs against the mutant SOD1 identified two potential binders, Tucatinib (51039094) and Regorafenib (11167602), which interacted with Leu106, similar to the control drug, Ebselen. Further simulations assessed the dynamic properties of SOD1 in monomeric and dimeric forms while bound to these compounds. 11167602 maintained stable interaction with the monomeric SOD1 mutant, whereas 51039094 and Ebselen dissociated from the monomeric protein’s binding site. However, all three compounds were stably bound to the dimeric SOD1. MM/GBSA analysis revealed similar negative binding free energies for 11167602 and 51039094, identifying them as strong binders due to their interaction with Cys111. Experimental validation, including in vitro, cell-based, and in vivo assays are essential to confirm these candidates before advancing to clinical trials.
Read full abstract