Light-driven molecular rotary motors are nanometric machines able to convert light into unidirectional motions. Several types of molecular motors have been developed to better respond to light stimuli, opening new avenues for developing smart materials ranging from nanomedicine to robotics. They have great importance in the scientific research across various disciplines, but a detailed comprehension of the underlying ultrafast photophysics immediately after photo-excitation, that is, Franck-Condon region characterization, is not fully achieved yet. For this aim, it is first required to rely on an accurate description at ab initio level of the system in this potential energy region before performing any further step, that is, dynamics. Thus, we present an extensive investigation aimed at accurately describing the electronic structure of low-lying electronic states (electronic layout) of a molecular rotor in the Franck-Condon region, belonging to the class of overcrowded alkenes: 9-(2-methyl-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-ylidene)-9H-fluorene. This system was chosen since its photophysics is very interesting for a more general understanding of similar compounds used as molecular rotors, where low-lying electronic states can be found (whose energetic interplay is crucial in the dynamics) and where the presence of different substituents can tune the HOMO-LUMO gap. For this scope, we employed different theory levels within the time-dependent density functional theory framework, presenting also a careful comparison adopting very accurate post Hartree-Fock methods and characterizing also the different conformations involved in the photocycle. Effects on the electronic layout of different functionals, basis sets, environment descriptions, and the role of the dispersion correction were all analyzed in detail. In particular, a careful treatment of the solvent effects was here considered in depth, showing how the implicit solvent description can be accurate for excited states in the Franck-Condon region by testing both linear-response and state-specific formalisms. As main results, we chose two cost-effective (accurate but relatively cheap) theory levels for the ground and excited state descriptions, and we also verified how choosing these different levels of theory can influence the curvature of the potential via a frequency analysis of the normal modes of vibrations active in the Raman spectrum. This theoretical survey is a crucial step towards a feasible characterization of the early stage of excited states in solution during photoisomerization processes wherein multiple electronic states might be populated upon the light radiation, leading to a future molecular-level interpretation of time-resolved spectroscopies.
Read full abstract