Water reuse for potable purposes can represent a realistic source supply of drinking water in areas with water scarcity. Therefore, combining conventional wastewater treatment technologies with advanced technologies is necessary to remove contaminants and obtain high-quality and safe water. In this study, the pesticides and degradation products, atrazine (ATZ), hydroxyatrazine (ATZOH), deethylatrazine (DEA), deisopropylatrazine (DIA), simazine (SMZ), ametryn (AMT), diuron (DIU), 2,4-D, fipronil (FIP), fipronil sulfide (FIP-SF) and fipronil sulfone (FIP-SN) were evaluated in effluent after membrane bioreactor (MBR), effluent after advanced treatment by multiple barriers (MBR, reverse osmosis, UV/H2O2 and activated carbon), in tap water collected in the urban region of Campinas and in the Atibaia River (water supply source from city of Campinas). The pesticide concentrations in the Atibaia River and the post-MBR effluent ranged between 1 and 434 ng L−1 and 1 and 470 ng L−1, respectively. Therefore, the Atibaia River and the post-MBR effluent had the same magnitude pesticide concentrations. In the production of potable water reuse, after the multiple barriers processes, only fipronil (1 ng L−1) and atrazine (3 ng L−1) were quantified in some of the samples. In tap water from Campinas, atrazine, ATZOH, DEA, diuron, and 2,4-D were quantified in concentrations ranging between 3 and 425 ng L−1. Therefore, when comparing drinking water obtained from conventional treatment with potable water reuse, according to the pesticides studied, it is possible to conclude that the advanced treatment used on a pilot scale is promising for use in a potable water reuse plant. However, studies involving more microbiological and chemical parameters should be conducted to classify potable water reuse as drinking water.