Vanadium carbide (VC) is the greatest potential hydrogen evolution reaction (HER) catalyst because of its platinum-like property and abundant earth reserves. However, it exhibits insufficient catalytic performance due to the unfavorable interaction of reaction intermediates with catalysts. In this work, using NH4VO3 as the main raw material, the flow ratio of CH4 to Ar was accurately controlled, and a non-transition metal Al-doped into VC (100) nano-flowers with carbon hybrids on nickel foams (Al-VC@C/NF) was prepared for the first time as a high-efficiency HER catalyst by chemical vapor carbonization. The overpotential of Al-VC@C/NF catalysts in 0.5 M H2SO4 and 1 M KOH at a current density of 10 mA cm−2 are only 58 mV and 97 mV, respectively, which are the best HER performance among non-noble metal vanadium carbide based catalysts. Simultaneously, Al-VC@C/NF exhibits small Tafel slope (45 mV dec-1 and 73 mV dec-1) and excellent stability in acidic and alkaline media. Theoretical calculations demonstrate that doped Al atoms can induce electron redistribution on the vanadium carbide surface to form electron-rich carbon sites, which significantly reduces the energy barrier during the HER process. This work provides a new tactic to modulate vanadium-based carbons as efficient HER catalysts through non-transition metal doping.
Read full abstract