Abstract

In situ synchrotron high-energy x-ray diffraction experiments and detailed transmission electron microscopy (TEM) characterization were conducted on as-fabricated and neutron-irradiated yttrium hydrides. The high-resolution synchrotron x-ray diffraction revealed minor α yttrium and major δ yttrium hydride phases in all specimens. Specimens were subject to heat treatments (heating-cooling cycles), and the intensity of α yttrium partially and completely disappeared in as-fabricated and neutron-irradiated specimens, respectively. The disappearance of α yttrium was unforeseen because hydrogen was expected to leave δ phase, causing an increase in α yttrium diffraction peak intensity. This observation indicated a surplus of hydrogen in the specimens where it was odd for hydride-forming early transition metal elements. The subsequent through-focus TEM characterization discovered nanometric cavities in both as-fabricated and neutron-irradiated yttrium hydride specimens for the first time. Two types of cavities were identified as fabrication-caused and irradiation-induced. The fabrication-caused cavities were associated with regions having linear deformation features, interfaces, and inclusions. The irradiation-induced cavities were observed as being formed isolated in the yttrium hydride phase. The presence of such nanometric cavities was considered as potential hydrogen storage pockets where the overall hydrogen storing capacity of yttrium hydride would be enhanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.