Triple-negative breast cancer (TNBC) is known for its aggressive nature, lack of effective diagnostic tools and treatments, and generally poor prognosis. The objective of this study was to investigate metabolic changes in TNBC using metabolomics approaches and explore the underlying mechanisms through integrated analysis with transcriptomics. In this study, serum untargeted metabolic profiles were first examined between 18 TNBC patients and 21 healthy control (HC) subjects using liquid chromatography-mass spectrometry (LC-MS), identifying a total of 22 significantly differential metabolites (DMs). Subsequently, receiver operating characteristic analysis revealed that 7-methylguanine could serve as a potential biomarker for TNBC in both the discovery and validation sets. Additionally, transcriptomic datasets were retrieved from the GEO database to identify differentially expressed genes (DEGs) between TNBC and normal tissues. An integrative analysis of the DMs and DEGs was conducted, uncovering potential molecular mechanisms underlying TNBC. Notably, three pathways—tyrosine metabolism, phenylalanine metabolism, and glycolysis/gluconeogenesis—were enriched, providing insight into the energy metabolism disorders in TNBC. Within these pathways, two DMs (4-hydroxyphenylacetaldehyde and oxaloacetic acid) and six DEGs (MAOA, ADH1B, ADH1C, AOC3, TAT, and PCK1) were identified as key components. In summary, this study highlights metabolic biomarkers that could potentially be used for the diagnosis and screening of TNBC. The comprehensive analysis of metabolomics and transcriptomics data offers a validated and in-depth understanding of TNBC metabolism.
Read full abstract