Abstract

Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer (BC), characterized by a dismal prognosis. Dysregulated long non-coding RNA LINC01614 might be a potential biomarker for BC as previously reported. Nevertheless, its functions and mechanism in TNBC cells are unclear. The study aimed to study the effects of LINC01614 on TNBC cell migration, invasion, and epithelial-mesenchymal transition (EMT) process as well as the related mechanism. Reverse transcription quantitative polymerase chain reaction was performed to detect the expression of LINC01614 and SP1 in TNBC cells and tissues. The cellular localization of LINC01614 was determined by subcellular fraction assays. Cell counting kit-8 and Transwell invasion assays were conducted for measurement of TNBC cell viability and invasive ability. Cell migration was performed using wound healing assays and Transwell migration assays. Chromatin immunoprecipitation assays and luciferase reporter assays were used to explore the interaction between SP1 and LINC01614. Western blotting was used to assess protein levels of factors involved in EMT process and Wnt/ß-catenin signaling in TNBC cells. LINC01614 expression was elevated in TNBC tissues and cells. LINC01614 knockdown inhibited cell viability as well as migratory and invasive abilities of TNBC cells. LINC01614 knockdown also obstructed EMT process, as shown by E-cadherin upregulation and vimentin downregulation in TNBC cells. SP1 directly bound to the promoter of LINC01614 and activated LINC01614 expression. SP1 overexpression reversed the suppressive effect of LINC01614 knockdown on TNBC cell migration, invasion, and EMT process. Protein levels of Wnt and ß-catenin were diminished by LINC01614 knockdown, and the trend was partially rescued by SP1 overexpression. SP1-induced LINC01614 promoted malignant behavior of TNBC cells by activating the Wnt/ß-catenin signaling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.