The GABAergic reticular thalamic nucleus (RTN) is a major source of inhibition for thalamocortical neurons in the ventrobasal complex (VB). Thalamic circuits are thought to be an important anatomic target for general anesthetics. We investigated presynaptic actions of the intravenous anesthetic propofol in RTN neurons, using RTN-retained and RTN-removed brain slices. In RTN-retained slices, focal and bath application of propofol increased intrinsic excitability, temporal summation, and spike firing rate in RTN neurons. Propofol-induced activation was associated with suppression of medium afterhyperpolarization potentials. This activation was mimicked and completely occluded by the small conductance calcium-activated potassium (SK) channel blocker apamin, indicating that propofol could enhance RTN excitability by blocking SK channels. Propofol increased GABAergic transmission at RTN-VB synapses, consistent with excitation of presynaptic RTN neurons. Stimulation of RTN resulted in synaptic inhibition in postsynaptic neurons in VB, and this inhibition was potentiated by propofol in a concentration-dependent manner. Removal of RTN resulted in a dramatic reduction of both spontaneous postsynaptic inhibitory current frequency and propofol-mediated inhibition of VB neurons. Thus the existence and activation of RTN input were essential for propofol to elicit thalamocortical suppression; such suppression resulted from shunting through the postsynaptic GABA(A) receptor-mediated chloride conductance. The results indicate that propofol enhancement of RTN-mediated inhibitory input via blockade of SK channels may play a critical role in "gating" spike firing in thalamocortical relay neurons.