Abstract

Blockade of L-type Ca2+ channels results in a decrease in firing frequency of neostriatal neurons. In contrast, N- and P/Q-types of Ca2+ channel cooperate to tune firing pattern, since both of these channel types have to be blocked to enhance firing frequency. Parameters of the intensity-frequency plot were differentially modified by Ca2+ channel antagonists: while L-type Ca2+ channel block reduced the dynamic range by about 80%, block of N- and P/Q-types of Ca2+ channel generated a steeper intensity-frequency plot. These effects are explained in terms of the sustained depolarization and the afterhyperpolarizing potential known to be dependent upon L- and N-, P/Q-types of Ca2+ channels, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.