Internal tandem duplication (ITD) mutations of the receptor tyrosine kinase fms-like tyrosine kinase 3 (FLT3) are present in acute myeloid leukemia (AML) cells in 30% of cases and are associated with high relapse rate and short disease-free survival. FLT3 inhibitors have clinical activity, but their activity is limited and transient. New therapeutic approaches combining FLT3 inhibitors and inhibitors of downstream or parallel signaling pathways may increase depth and duration of responses.The Pim-1 serine/threonine kinase is transcriptionally upregulated by FLT3-ITD. We previously demonstrated that Pim-1 phosphorylates and stabilizes FLT3 and thereby promotes its signaling in a positive feedback loop. Pim kinase inhibitors are in clinical trials. Here we studied the effect of combinations of the Pim kinase inhibitor AZD1208 and clinically active FLT3 inhibitors on AML with FLT3-ITD in vitro and in vivo.Ba/F3-ITD cells, with FLT3-ITD, were grown in medium with the Pim kinase inhibitor AZD1208 at 1 μM and/or the FLT3 inhibitors quizartinib (Q), sorafenib (S) or crenolanib (C) at their IC50values of 1, 2.5 and 20 nM, respectively, and viable cells were measured at serial time points. While Q, S, C or AZD1208 treatments reduced cell numbers, compared to DMSO control, combined AZD1208 and Q, S or C treatments abrogated proliferation. Because FLT3-ITD cells remain responsive to FLT3 ligand (FLT3L) despite constitutive FLT3 activation and increased FLT3L levels following chemotherapy have been hypothesized to contribute to relapse, we repeated the proliferation experiments in the presence of 0, 1, 3 and 10 ng/ml FLT3L. FLT3L produced a concentration-dependent increase in proliferation and, while Q, S, C or AZD1208 treatments individually reduced cell numbers, combined AZD1208 and Q, S or C abrogated proliferation at all FLT3L concentrations tested, suggesting that these combinations overcome growth stimulation by FLT3L.To understand the anti-proliferative effect of combined Pim-1 and FLT3 inhibitors, we first studied cell cycle effects of AZD1208 and Q, S or C in Ba/F3-ITD cells and of AZD1208 and Q in the additional FLT3-ITD cell lines 32D-ITD, MV4-11 and MOLM14. We found a progressive increase in sub-G1 phase cells at 24, 48 and 72 hours, consistent with induction of apoptosis. Synergistic induction of apoptosis was confirmed by Annexin V/propidium iodide labeling of Ba/F3-ITD and 32D-ITD cells treated for 48 hours with AZD1208 combined with Q (p<0.0001), S (p<0.0001) or C (p<0.001), and of MV4-11 (p<0.0001) and MOLM14 (p<0.05) cells treated with AZD1208 combined with Q, in relation to each drug alone. Apoptosis was additionally confirmed by loss of mitochondrial membrane potential. Synergistic induction of apoptosis was not seen in Ba/F3-WT or 32D-WT cells, with wild-type FLT3, indicating a FLT3-ITD-specific effect. Synergistic (p<0.01) induction of apoptosis was seen in three FLT3-ITD AML patient samples treated in vitro with AZD1208 combined with Q. In an in vivo model, synergistic decrease in tumor volume was seen with combined AZD1208 and Q therapy in mice with subcutaneously implanted MV4-11 cells, with FLT3-ITD, but not with KG1a cells, with wild-type FLT3.Mechanistically, combined AZD1208 and Q treatment in vitro did not increase reactive oxygen species, compared to each drug alone, but increased both cleaved caspase 3 and cleaved poly (ADP-ribose) polymerase (PARP) levels, and caspase 3 cleavage was reduced by co-incubation with the pan-caspase inhibitor Z-VAD. Moreover, combined AZD1208 and Q treatment caused a synergistic decrease in expression of the anti-apoptotic Mcl-1 and of Bcl-xL proteins, but did not significantly alter Bim-1, p-Bad, Bad, Bax, Bak or Bcl-2, pro- and anti-apoptotic protein levels. Bcl-xL mRNA expression decreased along with protein levels, but Mcl-1 mRNA levels remain unchanged, indicating post-transcriptional down-regulation of Mcl-1 by the combination treatment.In summary, synergistic cytotoxicity of AZD1208 and clinically active FLT3 inhibitors was demonstrated in FLT3-ITD cell lines and patient samples in vitro and in cell lines in vivo, via caspase-mediated apoptosis, associated with a synergistic decrease in Mcl-1 and Bcl-xL expression. Our data suggest clinical promise for combination therapy with Pim kinase and FLT3 inhibitors in patients with AML with FLT3-ITD. DisclosuresNo relevant conflicts of interest to declare.
Read full abstract