Estimating horizontal center of mass (CoM) is an important process that is used in the control of self-paced treadmills, as well as in clinical and scientific biomechanical analysis. Many laboratories use motion-capture to estimate CoM, while others use force-plate based estimates, either because they cannot access motion-capture or they do not want to be taxed with post-processing optoelectronic data. Three force-plate derived center of mass estimation algorithms were compared against a benchmark motion-capture technique. Two of them have recently been reported in the literature, and both rely on numerical integration of 2nd-order differential equations. We propose a third technique that uses an algebraic equation to directly relate center of pressure to center of mass without numerical drift. Twenty-four healthy adults participated in a five-minute steady-state walking test to compare these algorithms. The sample-by-sample standard deviation of the three force-plate based algorithms from the motion-capture benchmark algorithm was evaluated. The algebraic technique provided less error than either of the two more common integration techniques (p<0.05). The results of this study support the viability of using only ground reaction forces for self-paced treadmills and also show that a simple algebraic model is preferred to integration approaches. The use of an algebraic estimation simplifies control implementation for self-paced treadmill applications and eliminates the need for event-based drift recalibration.
Read full abstract