BackgroundThe high incidence of thrombosis in the portal venous system following splenectomy (a frequently adopted surgery for treating portal hypertension in patients with splenomegaly and hypersplenism) is a critical clinical issue. The aim of this study was to address whether quantification of postsplenectomy hemodynamics has potential value for assessing the risk of postsplenectomy thrombosis. MethodsComputational models were constructed for three portal hypertensive patients treated with splenectomy based on their preoperative clinical data to quantify hemodynamics in the portal venous system before and after splenectomy, respectively. Each patient was followed up for three or five months after surgery and examined with CT to screen potential thrombosis. FindingsThe area ratio of wall regions exposed to low wall shear stress was small before splenectomy in all patients, which increased markedly after splenectomy and exhibited enlarged inter-patient differences. The largest area ratio of low wall shear stress and most severe flow stagnation after splenectomy were predicted for the patient suffering from postsplenectomy thrombosis, with the wall regions exposed to low wall shear stress corresponding well with the CT-detected distribution of thrombus. Further analyses revealed that postoperative hemodynamic characteristics were considerably influenced by the anatomorphological features of the portal venous system. InterpretationPostoperative hemodynamic conditions in the portal venous system are highly patient-specific and have a potential link to postsplenectomy thrombosis, which indicates that patient-specific hemodynamic studies may serve as a complement to routine clinical assessments for refining risk stratification and postoperative patient management.
Read full abstract