Ankylosing spondylitis (AS) is a genetic condition that frequently results in spinal sagittal plane deformity of thoracolumbar or cervicothoracic junctions. Generally, a combination of osteotomy and spinal fixation is used to treat severe cases. Although surgical techniques for traumatic injury across the cervicothoracic junction have been well characterized in clinical and biomechanical literature, the specific model of instrumented opening wedge osteotomy in autofused AS has not been studied biomechanically. This study characterizes the structural stability of various posterior fixation techniques across the cervicothoracic junction in spines with AS, specifically considering the effects of posterior rod diameter and material type. For each of 10 fresh-frozen human spines (3 male, 7 female; mean age 60 ± 10 years; C3-T6), an opening wedge osteotomy was performed at C7-T1. Lateral mass screws were inserted bilaterally from C-4 to C-6 and pedicle screws from T-1 to T-3. For each specimen, 3.2-mm titanium (Ti), 3.5-mm Ti, and 3.5-mm cobalt chromium (CoCr) posterior spinal fusion rods were tested. To simulate the anterior autofusion and long lever arms characteristic of AS, anterior cervical plates were placed from C-4 to C-7 and T-1 to T-3 using fixed angle screws. Nondestructive flexion-extension, lateral bending, and axial rotation tests were conducted to 3.0 Nm in each anatomical direction; 3D motion tracking was used to monitor primary range of motion across the osteotomy (C7-T1). Biomechanical tests used a repeat-measures test design. The order of testing for each rod type was randomized across specimens. Constructs instrumented with 3.5-mm Ti and 3.5-mm CoCr rods were significantly stiffer in flexion-extension than those with the 3.2-mm Ti rod (25.2% ± 16.4% and 48.1% ± 15.3% greater than 3.2-mm Ti, respectively, p < 0.05). For axial rotation, the 3.5-mm Ti and 3.5-mm CoCr constructs also exhibited a significant increase in rigidity compared with the 3.2-mm Ti construct (36.1% ± 12.2% and 52.0% ± 20.0%, respectively, p < 0.05). There were no significant differences in rigidity seen between the 3 types of rods in lateral bending (p > 0.05). The 3.5-mm CoCr rod constructs showed significantly higher rigidity in flexion-extension than the 3.5-mm Ti rod constructs (33.1% ± 15.5%, p < 0.05). There was a trend for 3.5-mm CoCr to have greater rigidity in axial rotation (36.2% ± 18.6%), but this difference was not statistically significant (p > 0.05). The results of this study suggest that 3.5-mm CoCr rods are optimal for achieving the most rigid construct in opening wedge osteotomy in the cervicothoracic region of an AS model. Rod diameter and material properties should be considered in construct strategy. Some surgeons have advocated anterior plating in patients with AS after osteotomy for additional stability and bone graft surface. Although this effect was not examined in this study, additional posterior stability achieved with CoCr may decrease the need for additional anterior procedures.
Read full abstract