Abstract
Traditional posterior pedicle screw fixation is well established as the standard for spinal stabilization following posterior or posterolateral lumbar fusion. In patients with lumbar spinal stenosis requiring segmental posterior instrumented fusion and decompression, interlaminar lumbar instrumented fusion (ILIF) is a potentially less invasive alternative with reduced morbidity and includes direct decompression assisted by an interlaminar allograft spacer stabilized by a spinous process plate. To date, there has been no biomechanical study on this technique. In the present study the biomechanical properties of the ILIF construct were evaluated using an in vitro cadaveric biomechanical analysis, and the results are presented in comparison with other posterior fixation techniques. Eight L1-5 cadaveric specimens were subjected to nondestructive multidirectional testing. After testing the intact spine, the following conditions were evaluated at L3-4: bilateral pedicle screws, bilateral laminotomy, ILIF, partial laminectomy, partial laminectomy plus unilateral pedicle screws, and partial laminectomy plus bilateral screws. Intervertebral motions were measured at the index and adjacent levels. Bilateral pedicle screws without any destabilization provided the most rigid construct. In flexion and extension, ILIF resulted in significantly less motion than the intact spine (p < 0.05) and no significant difference from the laminectomy with bilateral pedicle screws (p = 0.76). In lateral bending, there was no statistical difference between ILIF and laminectomy with unilateral pedicle screws (p = 0.11); however, the bilateral screw constructs were more rigid (p < 0.05). Under axial rotation, ILIF was not statistically different from laminectomy with unilateral or bilateral pedicle screws or from the intact spine (p > 0.05). Intervertebral motions adjacent to ILIF were typically lower than those adjacent to laminectomy with bilateral pedicle screws. Stability of the ILIF construct was not statistically different from bilateral pedicle screw fixation following laminectomy in the flexion and extension and axial rotation directions, while adjacent segment motions were decreased. The ILIF construct may allow surgeons to perform a minimally invasive, single-approach posterior decompression and instrumented fusion without the added morbidity of traditional pedicle screw fixation and posterolateral fusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.