Heat stress is a major concern for lactating dairy cows. This study evaluated the effects of heat stress on six Holstein-Friesian crossbred dairy cows exposed to three thermal conditions represented by the Temperature-Humidity Index (THI). These conditions included a baseline pre-treatment phase at THI-72, a heat stress treatment phase at THI-75 and THI-80, and a post-treatment recovery phase at THI-72. The duration of the heat stress treatment phase was 24 h. A total of four trials, each involving three cows, were conducted in an IoT-based climatic chamber to assess various physiological, hematological, biochemical, and production parameters across these phases. Compared to the baseline (THI-72), cows showed significant increases (p < 0.05) in rectal temperature (RT), heart rate (HR), respiration rate (RR), and water intake (WI) at both THI-75 and THI-80, with the highest elevations observed at THI-80 (RT: 5.1%, HR: 8.6%, RR: 23.5%, and WI: 19.1%). Feed intake declined significantly (p < 0.05) by 6.5% and 14.0%, and milk yield dropped by 5.3% and 14.7% at THI-75 and THI-80, respectively; milk fat and protein percentages decreased by 1.1-fold and 1.2-fold. Hemoglobin, platelet, and lymphocyte counts, along with biochemical parameters (excluding serum creatinine) also decreased significantly (p < 0.05). The different levels of THI influenced pairwise correlation patterns, with THI-75 showing intense interactions and THI-80 exhibiting greater variability. The findings highlight that Holstein-Friesian crossbreed dairy cows are particularly vulnerable to heat stress, even with short-term exposure. This vulnerability can lead to economic losses for Bangladeshi dairy farmers rearing Holstein-Friesian crossbreed cows.
Read full abstract