Abstract
Rhinovirus (RV) is the most common respiratory virus affecting humans. The majority of asthma deteriorations are triggered by RV infections. However, whether the effects of RV single- and double-stranded RNA on asthma deterioration have common target genes needs to be further studied. In the present study, two datasets (GSE51392 and GSE30326) were used to screen for common differentially expressed genes (cDEGs). The molecular function, signaling pathways, interaction networks, hub genes, key modules and regulatory molecules of cDEGs were systematically analyzed using online tools such as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, STRING and NetworkAnalyst. Finally, the hub genes STAT1 and IFIH1 were verified in clinical samples using reverse transcription-quantitative PCR (RT-qPCR). A total of 85 cDEGs were identified. Function analysis revealed that cDEGs served an important role in the innate immune response to viruses and its regulation. Signal transducer and activator of transcription 1 (STAT1), interferon induced with helicase C domain 1 (IFIH1), interferon regulatory factor 7 (IRF7), DExD/H box helicase 58 (DDX58) and interferon-stimulating gene 15 (ISG15) were detected to be hub genes based on the protein-protein interactions and six topological algorithms. A key module involved in influenza A, the Toll-like receptor signaling pathway, was identified using Cytoscape software. The hub genes were regulated by GATA-binding factor 2 and microRNA-146a-5p. In addition, RT-qPCR indicated that the expression levels of the hub genes STAT1 and IFIH1 were low during asthma deterioration compared with post-treatment recovery samples. The present study enhanced the understanding of the mechanism of RV-induced asthma deterioration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.