The right internal jugular line (RIJL) is a type of central venous catheter (CVC) inserted into the right internal jugular vein to deliver medications and monitor vital functions in ICU patients. The placement of RIJL is routinely checked by a clinician in a chest X-ray (CXR) image to ensure its proper function and patient safety. To reduce the workload of clinicians, deep learning-based automated detection algorithms have been developed to detect CVCs in CXRs. Although RIJL is the most widely used type of CVCs, there is a paucity of investigations focused on its accurate segmentation and tip localization. In this study, we propose a deep learning system that integrates an anatomical landmark segmentation, an RIJL segmentation network, and a postprocessing function to segment the RIJL course and detect the tip with accuracy and precision. We utilized the nnU-Net framework to configure the segmentation network. The entire system was implemented on the SimpleMind Cognitive AI platform, enabling the integration of anatomical knowledge and spatial reasoning to model relationships between objects within the image. Specifically, the trachea was used as an anatomical landmark to extract a subregion in a CXR image that is most relevant to the RIJL. The subregions were used to generate cropped images, which were used to train the segmentation network. The segmentation results were recovered to original dimensions, and the most inferior point’s coordinates in each image were defined as the tip. With guidance from the anatomical landmark and customized postprocessing, the proposed method achieved improved segmentation and tip localization compared to the baseline segmentation network: the mean average symmetric surface distance (ASSD) was decreased from 2.72 to 1.41 mm, and the mean tip distance was reduced from 11.27 to 8.29 mm.
Read full abstract